

ISUOG Basic Training Physical Principles of Ultrasound including Safety

ISUOG Basic Training Physical Principles of Ultrasound including Safety

Learning objectives

At the end of the lecture you will be able to:

- Explain how an ultrasound image is generated
- Describe the different ultrasound modes used for imaging
- Describe the current international safety standards relating to

the thermal index (TI) and the mechanical index (MI)

- 1. What is ultrasound?
- 2. How is a B-mode real time image produced?
- **3**. How should the ALARA principle be applied?

Sound/Ultrasound

- Longitudinal mechanical wave
- Transmitted through medium by local displacement of particles within medium compression & rarefaction
- Frequency (Hertz) = cycles/sec
- Human audible range = 20Hz 20,000Hz (20kHz)
- Ultrasound = frequencies above audible range

- Compressional wave
- Gas, liquid or solid medium

 Speed of sound depends on medium and temperature

- Average in	1540 m/s	
– Steel	5960 m/s	
- Water	1482 m/s	
– Air	343 m/s	

- Piezoelectric effect— ability to generate (transduce) electrical charge in response to applied mechanical stress, & vice versa
- Piezoelectric crystal quartz, zirconium titanate, modern ceramics

Pulse transmission

A-mode

Pulse receiving

Display on monitor

Ultrasound transducer (probe)

Stoglen

Large angle / width takes time! Large number of sectors takes time!

Depth takes time!

The variations in a single line of echoes are recorded against time

M-Mode (Motion)

Frequency, resolution & penetration

- Low frequency:
 - Less resolution
 - More penetration
- High frequency:
 - High resolution
 - Less penetration

3.5 mHz	=	10-20 cm
5.0 mHZ	=	5-10 cm
7.5 mHz	=	2-5 cm
10.0 mHz	=	1-4 cm

Image - resolution

Lateral resolution

• Axial resolution

Basic Training

Temporal resolution

Image enhancement

Tissue harmonic imaging

- 2f, 3f, 4f : laws of physics
- Probe also able to receive harmonic frequencies

Artefacts

An ultrasound image which does not match actual anatomy

Artefacts Drop out/ acoustic shadowing

- Dark area posterior to dense reflector
- Most marked along US beam

Reduce/remove by adjusting angle of insonation

Artefacts

Posterior enhancement/amplification

- Area of increased brightness immediately posterior to cystic structure
- Caused by lack in sound attenuation through a structure with few interfaces

Confirm by changing angle of insonation

Artefacts Reverberation

- Occurs when US beam encounters 2 strong parallel reflectors
- Multiple parallel echoes result from back-and-forth travel of US between 2 reflecting surfaces

Change angle of insonation

Artefacts Reverberation

 Probe face & subcutaneous tissue interface provide parallel reflectors

Change angle of insonation

Artefacts Side lobe artifact

- Results from strong reflector that lies outside the incident beam, but within side lobe of central beam
- Echoes from reflector are displayed as if originating from within central beam

Safety issues – biological effects

- Increased movement of molecules -> results in rise in temperature
- Gas bubble can collapse (cavitation) -> results in pressure wave released into the surrounding tissue

Surrounding liquid increase in static pressure

Safety issues – TI, MI & ALARA

- Thermal Index = TI (<1.0) (power needed to increase temperature by 1 °C)
- Mechanical Index = MI (<1.0)
- ALARA principle as low as reasonably achievable

Scanning times & TI

The Safe Use of Ultrasound in Medical Diagnosis (3rd ed): 2012; The British Institute of Radiology ,154.

Safety issues - power levels

Safety statements

 International Society Ultrasound in Obstetrics & Gynecology (ISUOG) http://www.isuog.org/StandardsAndGuidelines/Statements+and+Guidelines/Sa

fety+Statements/

- British Medical Ultrasound Society (BMUS)
 <u>https://www.bmus.org/static/uploads/resources/STATEMENT_ON_THE_SAFE_USE_AND_POTENTIAL_HAZARDS_OF_DIAGNOSTIC_ULTRASOUND.pdf</u>
- American Institute of Ultrasound in Medicine (AIUM)
 http://www.aium.org/resources/statements.aspx

- 1. Understand how an ultrasound beam produces an image
- 2. Recognise artefacts, and know how to avoid them
- **3**. Understand the factors important to obtain an optimal Doppler signal
- 4. Be aware of the principles behind TI and MI

ISUOG Basic Training by **ISUOG** is licensed under a **Creative Commons**

Attribution-NonCommercial-NoDerivatives 4.0 International License.

Based on a work at https://www.isuog.org/education/basic-training.html.

Permissions beyond the scope of this license may be available at https://www.isuog.org/

Learning objectives

At the end of the lecture you will be able to:

- Explain how an ultrasound image is generated
- Describe the different ultrasound modes used for imaging
- Describe the current international safety standards relating to

the thermal index (TI) and the mechanical index (MI)

- 1. What is ultrasound?
- 2. How is a B-mode real time image produced?
- **3**. How should the ALARA principle be applied?

Sound/Ultrasound

- Longitudinal mechanical wave
- Transmitted through medium by local displacement of particles within medium compression & rarefaction
- Frequency (Hertz) = cycles/sec
- Human audible range = 20Hz 20,000Hz (20kHz)
- Ultrasound = frequencies above audible range

- Compressional wave
- Gas, liquid or solid medium

 Speed of sound depends on medium and temperature

- Average in	1540 m/s	
– Steel	5960 m/s	
- Water	1482 m/s	
– Air	343 m/s	

- Piezoelectric effect— ability to generate (transduce) electrical charge in response to applied mechanical stress, & vice versa
- Piezoelectric crystal quartz, zirconium titanate, modern ceramics

Pulse transmission

A-mode

Pulse receiving

Display on monitor

Ultrasound transducer (probe)

Stoglen

Large angle / width takes time! Large number of sectors takes time!

Depth takes time!

The variations in a single line of echoes are recorded against time

M-Mode (Motion)

Frequency, resolution & penetration

- Low frequency:
 - Less resolution
 - More penetration
- High frequency:
 - High resolution
 - Less penetration

3.5 mHz	=	10-20 cm
5.0 mHZ	=	5-10 cm
7.5 mHz	=	2-5 cm
10.0 mHz	=	1-4 cm

Image - resolution

Lateral resolution

• Axial resolution

Basic Training

Temporal resolution

Image enhancement

Tissue harmonic imaging

- 2f, 3f, 4f : laws of physics
- Probe also able to receive harmonic frequencies

Artefacts

An ultrasound image which does not match actual anatomy

Artefacts Drop out/ acoustic shadowing

- Dark area posterior to dense reflector
- Most marked along US beam

Reduce/remove by adjusting angle of insonation

Artefacts

Posterior enhancement/amplification

- Area of increased brightness immediately posterior to cystic structure
- Caused by lack in sound attenuation through a structure with few interfaces

Confirm by changing angle of insonation

Artefacts Reverberation

- Occurs when US beam encounters 2 strong parallel reflectors
- Multiple parallel echoes result from back-and-forth travel of US between 2 reflecting surfaces

Change angle of insonation

Artefacts Reverberation

 Probe face & subcutaneous tissue interface provide parallel reflectors

Change angle of insonation

Artefacts Side lobe artifact

- Results from strong reflector that lies outside the incident beam, but within side lobe of central beam
- Echoes from reflector are displayed as if originating from within central beam

Safety issues – biological effects

- Increased movement of molecules -> results in rise in temperature
- Gas bubble can collapse (cavitation) -> results in pressure wave released into the surrounding tissue

Surrounding liquid increase in static pressure

Safety issues – TI, MI & ALARA

- Thermal Index = TI (<1.0) (power needed to increase temperature by 1 °C)
- Mechanical Index = MI (<1.0)
- ALARA principle as low as reasonably achievable

Scanning times & TI

The Safe Use of Ultrasound in Medical Diagnosis (3rd ed): 2012; The British Institute of Radiology ,154.

Safety issues - power levels

Safety statements

 International Society Ultrasound in Obstetrics & Gynecology (ISUOG) http://www.isuog.org/StandardsAndGuidelines/Statements+and+Guidelines/Sa

fety+Statements/

- British Medical Ultrasound Society (BMUS)
 <u>https://www.bmus.org/static/uploads/resources/STATEMENT_ON_THE_SAFE_USE_AND_POTENTIAL_HAZARDS_OF_DIAGNOSTIC_ULTRASOUND.pdf</u>
- American Institute of Ultrasound in Medicine (AIUM)
 http://www.aium.org/resources/statements.aspx

- 1. Understand how an ultrasound beam produces an image
- 2. Recognise artefacts, and know how to avoid them
- **3**. Understand the factors important to obtain an optimal Doppler signal
- 4. Be aware of the principles behind TI and MI

ISUOG Basic Training by **ISUOG** is licensed under a **Creative Commons**

Attribution-NonCommercial-NoDerivatives 4.0 International License.

Based on a work at https://www.isuog.org/education/basic-training.html.

Permissions beyond the scope of this license may be available at https://www.isuog.org/

