

ISUOG Basic Training Umbilical and Uterine Artery Doppler Studies

©isuoq.org

Learning objectives

At the end of the lecture you will be able to:

 Describe how to perform, assess and report an umbilical artery doppler examination correctly

 Describe how to perform, assess and report a doppler examination of the uterine arteries correctly

Key questions

- 1. What technique is required to perform a clinically useful Doppler examination of the umbilical artery?
- 2. What are the main pitfalls to be aware of when using Doppler to sample the umbilical artery?
- 3. What technique is required to perform a clinically useful Doppler examination of both uterine arteries?
- 4. What are the main pitfalls to be aware of when using Doppler to sample the uterine arteries?

RECOMMENDATIONS

ISUOG Education Committee recommendations for basic training in obstetric and gynecological ultrasound

Umbilical and uterine Doppler

Second and third trimesters

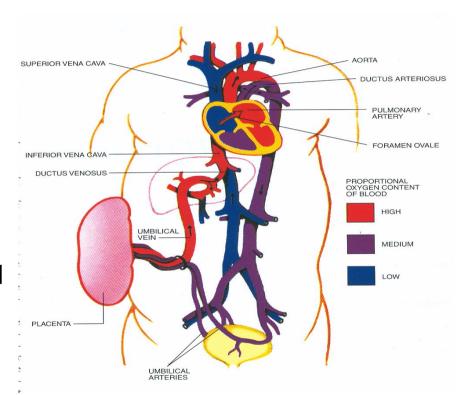
- · Determination of fetal position
- Assessment of fetal wellbeing, including fetal movements
- Amniotic fluid volume estimation and conditions associated with abnormal amniotic fluid volume
- Placental assessment, including relation to the internal cervical os
- Standard fetal biometry (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur diaphysis length (FL)) and estimated fetal weight calculation
- Fetal growth and typical causes of abnormal fetal growth
- Fetal head (intact cranium, head shape, midline falx, cerebral ventricles, cavum septi pellucidi, cerebellum, cisterna magna) and typical anomalies
- Fetal face (orbits, nose and mouth in different planes) and typical anomalies
- Fetal thorax (lung morphology and relationship to heart size) and typical anomalies
- Fetal heart (situs, four-chamber view, outflow tracts, three-vessel view) and typical anomalies
- Fetal abdomen (stomach, liver with umbilical vein, kidneys and urinary bladder, diaphragm, bowel, abdominal wall and cord insertion) and typical anomalies
- Fetal spine in longitudinal and transverse planes and typical anomalies
- Fetal limbs (arms, hands, legs, feet) and typical anomalies
- Umbilical and uterine artery Doppler

ULTRASOUND in Obstetrics & Gynecology

Ultrasound Obstet Gynecol 2013; **41**: 233–239
Published online in Wiley Online Library (wileyonlinelibrary.com). **DOI:** 10.1002/uog.12371

ISUOG Practice Guidelines: use of Doppler ultrasonography in obstetrics

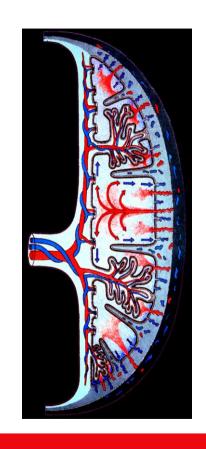
Bhide A, Acharya G, Bilardo CM, Brezinka C, Cafici D, Hernandez- Andrade E, Kalache K, Kingdom J, Kiserud T, Lee W, Lees C, Leung KY, Malinger G, Mari G, Prefumo F, Sepulveda W and Trudinger B. on behalf of the ISUOG Clinical Standards Committee


Some general rules before you start

- Know your US equipment
- Have some knowledge of fluid dynamics
- Have some knowledge of hemodynamics
- Have some knowledge of fetal physiology
- Know what you want to measure
- Know which indices to use
- Know when and when not to use Doppler

Fetal circulation

- High heart rate
- Low blood pressure
- Low peripheral resistance (placenta)
- Placental circulation constant (does not respond to vasoactive substances)
- With advancing gestation fetal BP and arteriolar placental bed flow increase, peripheral resistance decreases



Fetal and maternal vessels

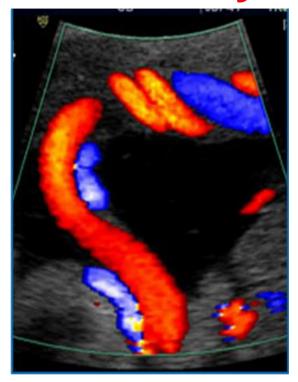
Fetal side

- Umbilical artery
- Middle cerebral artery
- Ductus venosus
- Umbilical vein

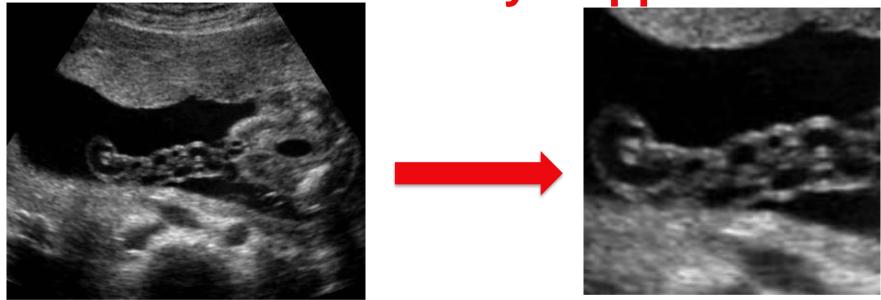
Maternal side

Uterine arteries

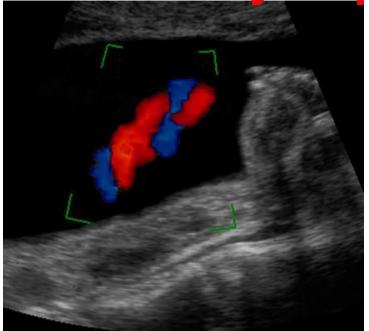
Indications for Doppler in pregnancy

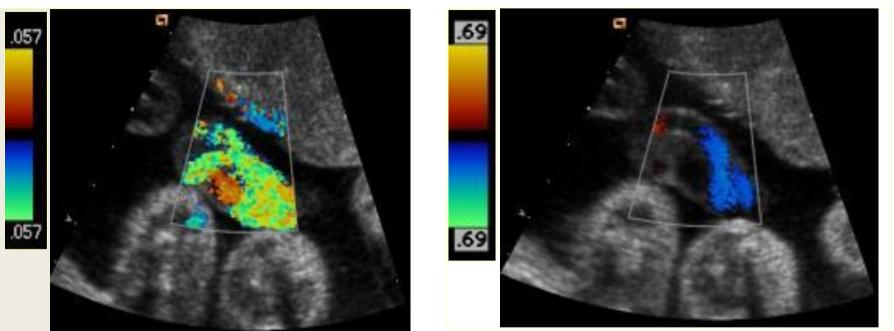

Placentation

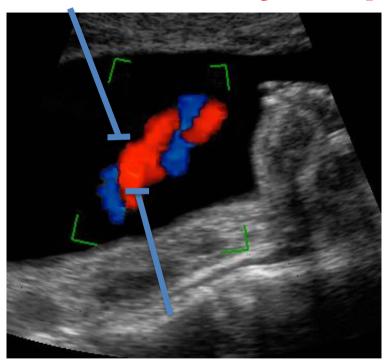
Trophoblast invasion of spiral arteries

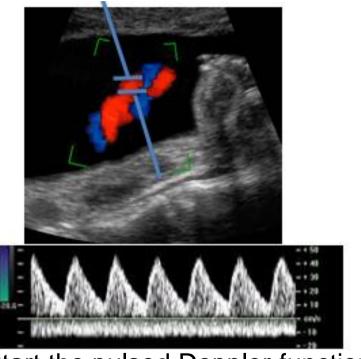

Fetal well-being

- Hypoxaemia
- Anaemia
- Chromosomal anomalies (1st trimester)
- Heart anomalies (heart function)
- MC twins
- Placental abruption
- Post-term pregnancies
- Diabetes

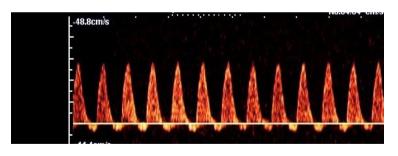


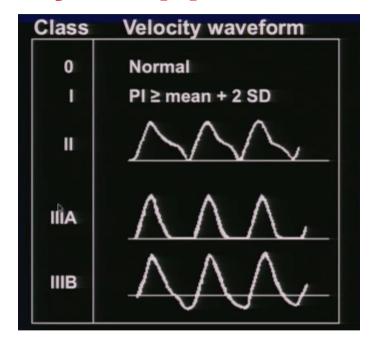

- 1. Visualise the cord, select a free loop, not too close to the fetal cord insertion or the placental insertion
- Zoom up/magnify the area of cord

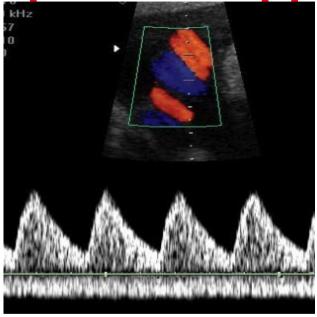

3. Switch on the colour Doppler modality (not compulsory)


3a. Optimize the colour flow mapping (CFM) scale

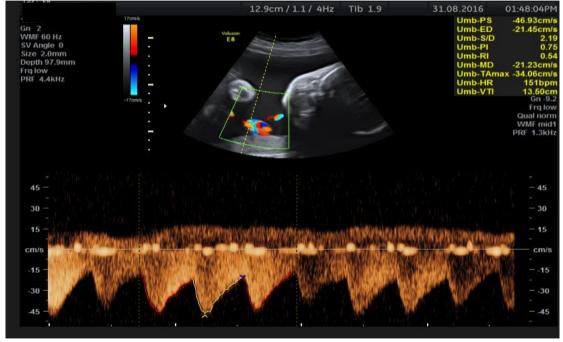
4. Place the sample gate on the umbilical artery



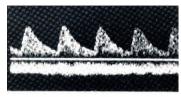

5. Start the pulsed Doppler function



Laurin 1987


2D/pulsed Doppler

2D image in freeze mode provides better Doppler signals

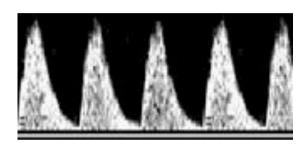


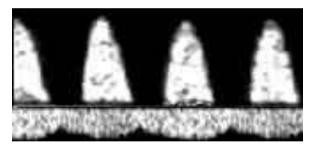
Irregular umbilical artery flow velocity pattern due to fetal breathing movements

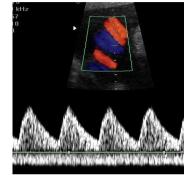
Umbilical cord Doppler

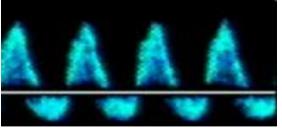
16 weeks

24 weeks


32 weeks

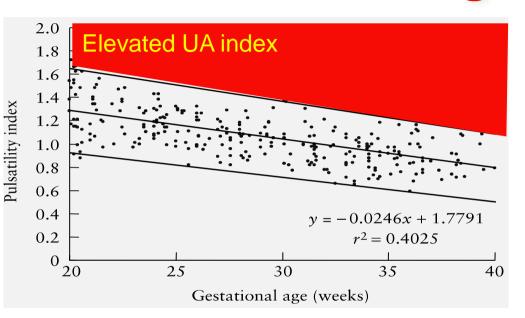


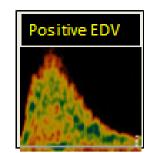

Umbilical artery in pathological pregnancies



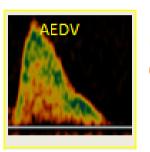
High PI

Absent end diastolic flow





Reversed end diastolic flow



Abnormal UA findings

30% of villous vessels are underperfused

50% of villous vessels are underperfused

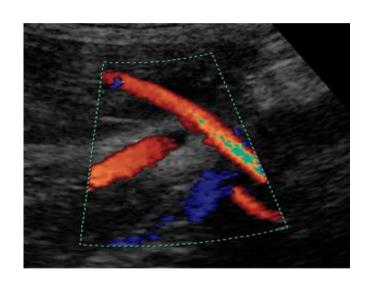
70% of villous vessels are underperfused

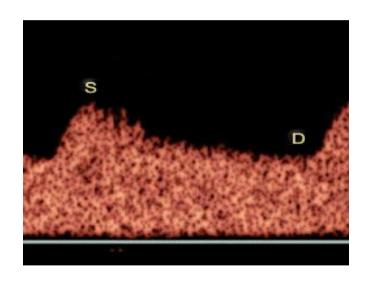
Baschat AA, Gembruch U, UOG 2003; 21: 124-7

Trudinger BJ, Giles WB, Br J Obstet Gynaecol, 1996; 105: 487-9.

Variation in umbilical artery waveforms

- There is a significant difference in doppler indices when measured at the fetal end, in a free cord loop or at the placental end of the umbilical cord
- For the sake of simplicity and consistency, measurements should be made in a free cord loop
- In multiple pregnancies, and/or when comparing repeated measurements longitudinally, recordings from fixed sites (fetal end, placental end or intra-abdominal portion) may be more reliable
- Reference ranges used should be appropriate for the site of interrogation




When is umbilical artery assessment indicated?

- Reduced fetal growth velocity/fetal growth restriction (FGR)
- MC twins
- Fetal hydrops
- EDF (+ve, absent or reversed) more sensitive than PI

Uterine artery Doppler

THE LANCET

Volume 322, Issue 8351, 17 September 1983, Pages 675

Originally published as Volume 2, Issue 8351

New doppler technique for assessing uteroplacental blood flow.

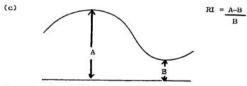
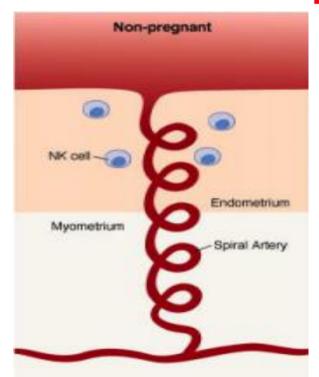
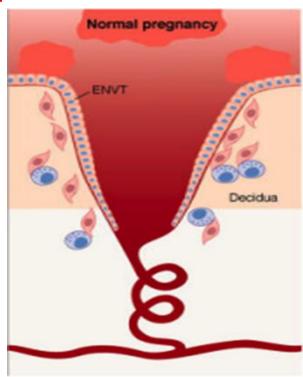
Campbell S, Diaz-Recasens J, Griffin DR, Cohen-Overbeek TE, Pearce JM, Willson K, Teague MJ.

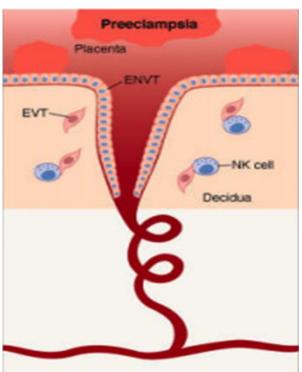
Abstract

Gated, pulsed, doppler ultrasound was used to study blood flow velocity profiles in the uterine vessels (arcuate arteries) during the second and third trimesters of pregnancy. A frequency index profile nomogram was constructed from 30 normal pregnancies; this demonstrated high diastolic velocity and low pulsatility. Among 31 pregnancies with complications 14 showed waveform changes suggesting raised vascular resistance; these pregnancies were complicated with a high frequency of proteinuric hypertension, poor fetal growth, and fetal hypoxia. This non-invasive technique may give early warning of impaired uteroplacental perfusion and can be used to evaluate methods of improving uterine blood flow.

PMID: 6132039 [PubMed - indexed for MEDLINE]

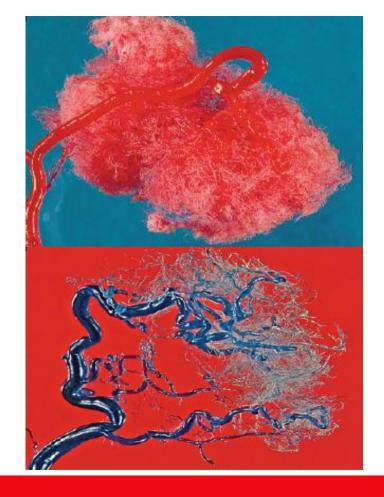
RI = 0.31

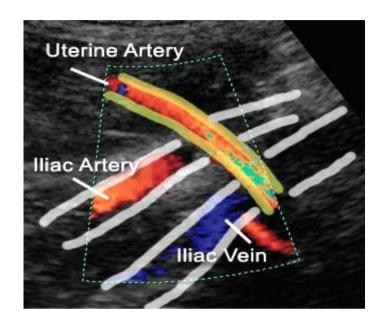

Figure 1. (a) and (b) arcuate artery flow velocity waveforms from two study patients; (c) diagrammatic representation of the resistance index.

Sisuog...

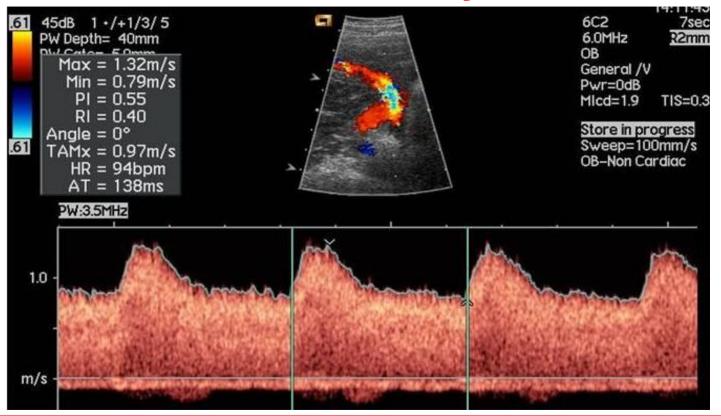
Trophoblast invasion

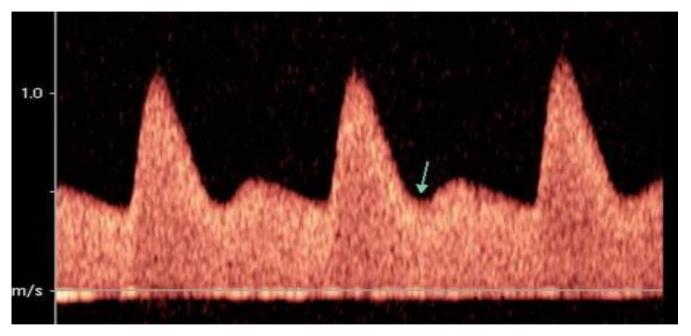


Uterine artery

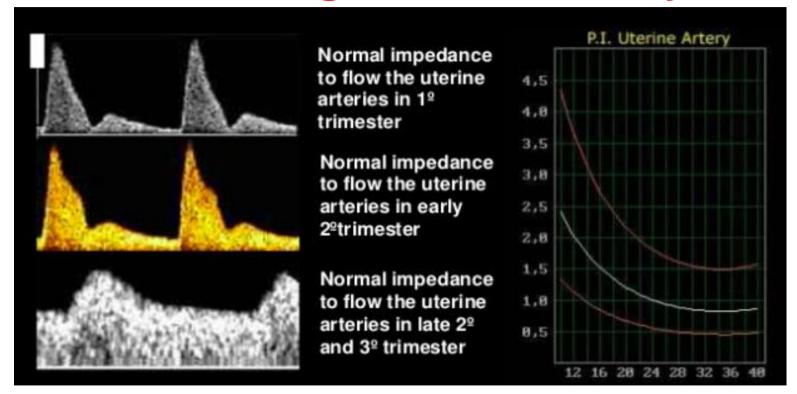

Uterine artery Doppler - technique

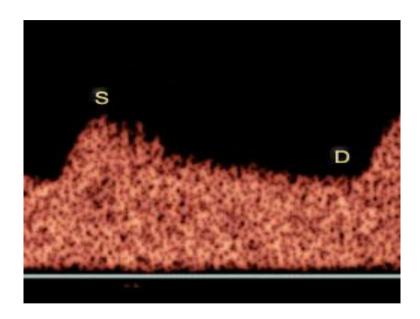
- Trans-abdominally, the probe is placed longitudinally in the lower lateral quadrant of the abdomen, and angled medially
- Colour flow mapping is useful to identify the uterine artery as it appears to cross the external iliac artery
- Sample volume is placed ~1 cm downstream from the crossover point
- If the uterine artery branches before the intersection of the external iliac artery, the sample volume should be placed on the main artery just before the bifurcation

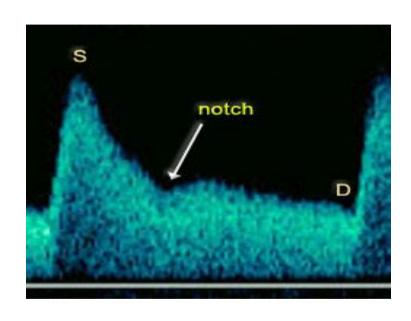

Uterine artery measurement



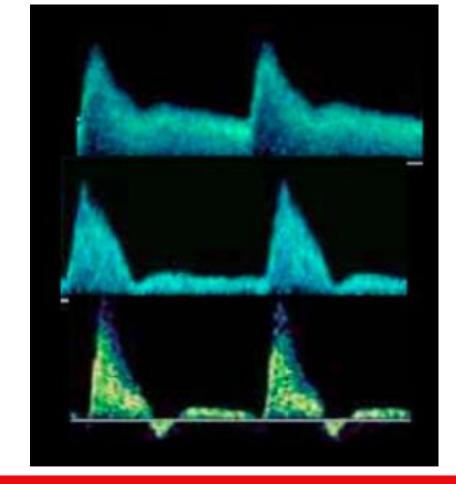
Normal uterine artery waveform


Abnormal uterine artery waveform

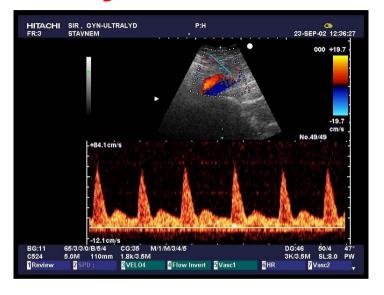

Note notch (arrow) implying increased resistance in the uterine artery

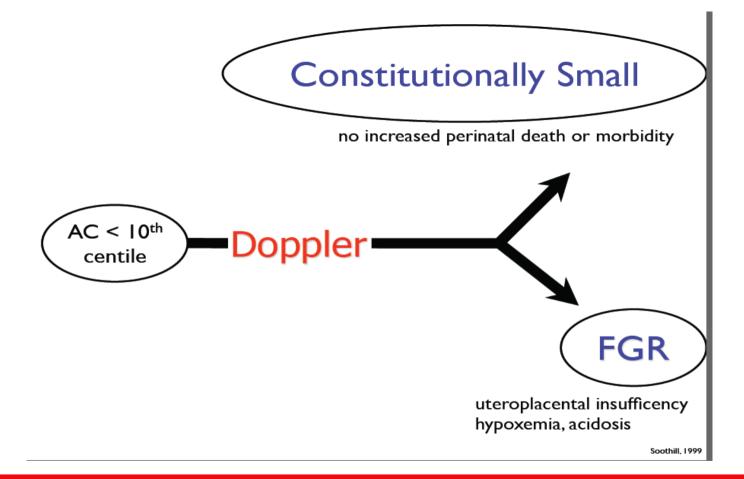

Normal range uterine artery PI

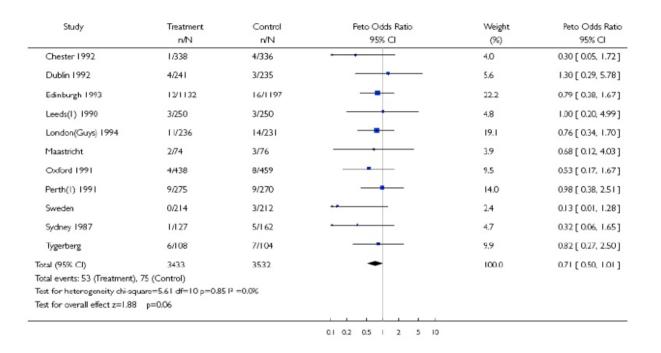
Uterine artery screening at 22-24 wks


Low risk for PE and IUGR

High risk for PE and IUGR


Abnormal uterine artery waveforms after 20-24 weeks


Uterine artery


Clinical applications

Doppler is associated with a 38% reduction in perinatal deaths

Neilson JPThe Cochrane library 2005, Issue 1

When are uterine artery measurements indicated?

Suspicion of placental insufficiency / FGR

- FGR in previous pregnancy
- Mothers with les, factor v leiden or other factors related to poor placentation

Repeatability of transabdominal uterine artery measurement

Table 1 Studies assessing repeatability of uterine artery Doppler during pregnancy

Reference	n	Doppler technique	Doppler index	Repeatability	Statistical method	
Intraobserver						
Schulman et al. 198610	NR	CW	S/D	4%	NR	
Mulders et al. 1988 ¹¹	21	PW	PI	6.4%	CV	
Gagnon et al. 1988 ¹²	11	CW	S/D	6.1%	CV	
Long et al. 1988 ¹³	20	CW	PI	6%	CV	
Oosterhof et al. 199214	15	PW	PI	10.8%	CV	
Bower et al. 1993 ¹⁵	5	Color	RI	7%	CV	
Ferrier et al. 199416	5	Color	RI	4%	CV	
Weissman et al. 19958	20	TV, CW	S/D	5%	CV	
Chan et al. 199517	9	CW	RI	5.9%	CV	
Harrington et al. 1997 ¹⁸	10	TV, Color	PI	2.6%	CV	
Liberati <i>et al</i> . 1997 ¹⁹	5	Color	RI	5.1%	CV	
Interobserver						
Trudinger et al. 198520	10	CW	S/D	No difference	CV	
Schulman et al. 1986 ¹⁰	NR	CW	S/D	4%	NR	
Mulders <i>et al</i> . 1988 ¹¹	13	PW	PI	11.1%	CV	
Oosterhof et al. 199214	10	PW	PI	10.1%	CV	
Bower et al. 1993 ²¹	10	CW	RI	-0.24 to 0.28	95% prediction interval	
Bewley et al. 1993 ²²	20	CW	RI	-0.18 to 0.22	95% prediction interval	
Ferrier et al. 199416	8	Color	RI	6.6%	CV	
Yan et al. 1995 ²³	20	Color	RI	-0.24 to 0.16	95% prediction interval	
Weissman et al. 19958	20	TV, CW	S/D	8%	CV	
Chan et al. 1995 ¹⁷	8	CW	RI	13.6%	CV	
Liberati <i>et al</i> . 1997 ¹⁹	10	Color	RI	7.4%	CV	

NR, not reported; CW, continuous wave; PW, pulsed wave; Color, color-flow Doppler; TV, transvaginal; S/D, systolic/diastolic ratio; PI, pulsatility index; RI, resistance Index; CV, coefficient of variation.

Papageorghiou et al UOG 2001

Second-trimester uterine artery Doppler screening in unselected populations: a review

A. T. Papageorghiou, C. K. H. Yu, S. Cicero, S. Bower and K. H. Nicolaides

Harris Table 2 Results of uterine artery Doppler screening studies for the prediction of pre-eclampsia, providing data on the definition of pre-eclampsia used, screen-positive rate, prevalence, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)

	een-positive Preva	alence Sensitiv	vity Specifici	ty PPV	NPV
Reference	rate (%) (9	%) (%)	(%)	(%)	(%)

Increased impedance to flow in the uterine arteries in pregnancies attending for routine antenatal care identifies approximately 40% (L.R. 6) of those who subsequently develop PE and approximately 20%(L.R. 3,5) of those who develop fetal growth restriction

Aquilina et al., 2001 ⁵⁰	9.8	5.5'	60	93	33	98
Papageorghiou et al., 2001 ³¹	5.1	1.4^{\dagger}	41	95	12	99

^{*}Blood pressure ≥ 140/90 and proteinuria > 150 mg/24 h

[†]Blood pressure ≥ 140/90 and proteinuria > 300 mg/24 h

^{*}Blood pressure rise (systolic > 30 mmHg and diastolic > 25 mmHg) with proteinuria > 500 mg/24 h

Pre-eclampsia screening

Table 1: Pooled and single estimates for uterine artery Doppler ultrasonography in predicting pre-eclampsia in patients at low risk or unspecified risk, by Doppler index, trimester and severity of pre-eclampsia

00 000				57		
Doppler index*	No. of studies	No. of women	Sensitivity (95% CI), %	Specificity (95% CI), %	Positive likelihood ratio (95% CI)	Negative likelihood ratio (95% CI)
Second trimester				111	1 III	
Overall pre-eclampsia						
Resistance index (> 0.58 or 90th centile)	11	3 778	74 (62-86)	79 (71-87)	3.5 (2.2-4.8)	0.33 (0.18-0.48
Resistance index (> 0.70 or 95th centile)	1	346	41 (18-67)	88 (84-91)	3.4 (1.7-5.7)	0.67 (0.42-0.90
Pulsatility index	7	38 230	42 (25-58)	91 (86-96)	4.5 (1.7-7.3)	0.64 (0.47-0.82
Bilateral notching	17	36 969	43 (26-60)	93 (90-97)	6.5 (4.3-8.7)	0.61 (0.44-0.79
Unilateral notching	6	8 016	39 (23-55)	92 (88-95)	4.6 (1.3-7.9)	0.67 (0.48-0.86
Any notching	8	4 205	74 (60-87)	84 (76-92)	4.6 (2.0-7.3)	0.31 (0.15-0.48
Resistance index or notching	7	8 151	79 (62-95)	83 (73-92)	4.5 (2.6-6.5)	0.26 (0.08-0.44
Resistance index and notching	5	1 654	72 (48-96)	87 (79-96)	5.6 (3.1-8.1)	0.32 (0.07-0.58
Pulsatility index or notching	2	18 563	47 (44-51)	92 (88-96)	5.7 (2.9-8.4)	0.57 (0.53-0.62
Pulsatility index and notching	1	1 757	23 (14-35)	99 (98-99)	7.5 (5.4-10.2)	0.59 (0.47-0.71
S/D ratio	2	672	76 (68-84)	71 (62-80)	2.6 (1.8-3.5)	0.34 (0.22-0.46
A/C ratio	3	1 284	74 (62-86)	82 (71-92)	4.0 (2.4-5.7)	0.32 (0.20-0.43
Notch index	2	819	12 (9-15)	86 (81-90)	0.8 (0.5-1.2)	1.00 (0.96-1.10
S/D or notching	2	1 083	28 (18-37)	88 (84-92)	2.4 (1.2-3.5)	0.82 (0.70-0.94

Cnossen JS et al 2008

Uteroplacental failuresequential well being changes

Growth ↓ Moderate/severe Redistribution (MCA↓) Cerebral blood flow 1 Fetal size (MCA) <5th centile Abnormal venous (HC/AC) blood flow (DV) Umbilical artery PI ↑

↓ AFI

Oligohydramnios

Take home messages

- Doppler investigations give insight into fetal and pregnancy pathophysiology
- Doppler is one of the major breakthroughs in Fetal Medicine
- Doppler can be used in all trimesters for different indications
- It can be used as a screening or a diagnostic tool, according to the circumstances
- In the 2nd and 3rd trimesters it can indicate abnormal placentation, fetal hypoxemia, fetal anemia and impending heart failure
- Operators should use it skillfully and with knowledge of its potentials, limitations and dangers

ISUOG Basic Training by <u>ISUOG</u> is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Based on a work at https://www.isuog.org/education/basic-training.html.

Permissions beyond the scope of this license may be available at https://www.isuog.org/

