ISUOG Basic Training

Umbilical and Uterine Artery Doppler
Learning objectives

At the end of the lecture you will be able to:

• Describe how to perform, assess & report an umbilical artery Doppler examination correctly

• Describe how to perform, assess & report a Doppler examination of the uterine arteries correctly
Key questions

1. What technique is required to perform a clinically useful Doppler examination of the umbilical artery?

2. What are the main pitfalls to be aware of when using Doppler to sample the umbilical artery?

3. What technique is required to perform a clinically useful Doppler examination of both uterine arteries?

4. What are the main pitfalls to be aware of when using Doppler to sample the uterine arteries?
Basic Training

- Umbilical and uterine artery Doppler

ISUOG Education Committee recommendations for basic training in obstetric and gynecological ultrasound

- Determination of fetal position
- Assessment of fetal wellbeing, including fetal movements
- Amniotic fluid volume estimation and conditions associated with abnormal amniotic fluid volume
- Placental assessment, including relation to the internal cervical os
- Standard fetal biometry (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur diaphyseal length (FL)) and estimated fetal weight calculation
- Fetal growth and typical causes of abnormal fetal growth
- Fetal head (intact cranium, head shape, midline falx, cerebral ventricles, cavum septi pellucidi, cerebellum, cisterna magna) and typical anomalies
- Fetal face (orbits, nose and mouth in different planes) and typical anomalies
- Fetal thorax (lung morphology and relationship to heart size) and typical anomalies
- Fetal heart (situs, four-chamber view, outflow tracts, three-vessel view) and typical anomalies
- Fetal abdomen (stomach, liver with umbilical vein, kidneys and urinary bladder, diaphragm, bowel, abdominal wall and cord insertion) and typical anomalies
- Fetal spine in longitudinal and transverse planes and typical anomalies
- Fetal limbs (arms, hands, legs, feet) and typical anomalies
- Umbilical and uterine artery Doppler
Some general rules before you start

• Know your US equipment
• Have some knowledge of fluid dynamics
• Have some knowledge of hemodynamics
• Have some knowledge of fetal physiology
• Know what you want to measure
• Know which indices to use
• Know when & when not to use Doppler
Fetal circulation

- High heart rate
- Low blood pressure (BP)
- Low peripheral resistance (placenta)
- Placental circulation constant (does not respond to vasoactive substances)
- With advancing gestation fetal BP & arteriolar placental bed flow increase, peripheral resistance decreases
Fetal and maternal vessels

Fetal side
- Umbilical artery (UA)
- Middle cerebral artery (MCA)
- Ductus venosus (DV)
- Umbilical vein (UV)

Maternal side
- Uterine arteries (UtA)
Indications for Doppler in pregnancy

Placentation
- Trophoblast invasion of spiral arteries

Fetal well-being
- Hypoxaemia
- Anaemia
- Chromosomal anomalies (1st trimester)
- Heart anomalies (heart function)
- MC twins
- Placental abruption
- Post-term pregnancies
- Diabetes
Umbilical artery Doppler
1. Visualise the cord, select a free loop, not too close to the fetal cord insertion or the placental insertion
2. Zoom up/magnify the area of cord
3. Switch on the colour Doppler modality (not compulsory)
3a. Optimise the colour flow mapping (CFM) scale
Umbilical artery Doppler

4. Place the sample gate on the umbilical artery
Umbilical artery Doppler

5. Start the pulsed Doppler function
Umbilical artery Doppler

2D/pulsed Doppler

- 2D image in freeze mode provides better Doppler signals
Irregular umbilical artery flow velocity pattern due to fetal breathing
Umbilical cord Doppler

Resistance in the placenta falls progressively with advancing gestation.
Umbilical artery in pathological pregnancies

- High PI
- Absent end diastolic flow (AEDF)
- Reversed end diastolic flow (REDF)
Abnormal UA findings

30% of villous vessels are underperfused

50% of villous vessels are underperfused

70% of villous vessels are underperfused

Baseline training

Abnormal UA findings

Elevated UA index

Variation in umbilical artery waveforms

• There is a significant difference in Doppler indices when measured at the fetal end, in a free cord loop or at the placental end of the umbilical cord

• For the sake of simplicity & consistency, measurements should be made in a free cord loop

• In multiple pregnancies, &/or when comparing repeated measurements longitudinally, recordings from fixed sites (fetal end, placental end or intra-abdominal portion) may be more reliable

• Reference ranges used should be appropriate for the site of interrogation
When is umbilical artery assessment indicated?

- Reduced fetal growth velocity/fetal growth restriction (FGR)
- Monochorionic twins
- Fetal hydrops
- EDF (+ve, absent or reversed) more sensitive than PI
Uterine artery Doppler
Uterine artery Doppler - technique

- Trans-abdominally, the probe is placed longitudinally in the lower lateral quadrant of the abdomen, & angled medially.
- Colour flow mapping is useful to identify the uterine artery as it appears to cross the external iliac artery.
- Sample volume is placed ~1 cm downstream from the crossover point.
- If the uterine artery branches before the intersection of the external iliac artery, the sample volume should be placed on the main artery just before the bifurcation.
Trophoblast invasion

Basic Training
New doppler technique for assessing uteroplacental blood flow.
Campbell S, Diaz-Recasens J, Griffin DR, Cohen-Overbeek TE, Pearce JM, Willson K, Teague MJ.

Abstract
Gated, pulsed, doppler ultrasound was used to study blood flow velocity profiles in the uterine vessels (arcuate arteries) during the second and third trimesters of pregnancy. A frequency index profile nomogram was constructed from 30 normal pregnancies; this demonstrated high diastolic velocity and low pulsatility. Among 31 pregnancies with complications 14 showed waveform changes suggesting raised vascular resistance; these pregnancies were complicated with a high frequency of proteinuric hypertension, poor fetal growth, and fetal hypoxia. This non-invasive technique may give early warning of impaired uteroplacental perfusion and can be used to evaluate methods of improving uterine blood flow.

PMID: 6132039 [PubMed - indexed for MEDLINE]
Normal uterine artery waveform
Abnormal uterine artery waveform

Note notch (arrow) implying increased resistance in the uterine artery
Normal range uterine artery PI

Normal impedance to flow the uterine arteries in 1º trimester

Normal impedance to flow the uterine arteries in early 2º trimester

Normal impedance to flow the uterine arteries in late 2º and 3º trimester
Uterine artery screening at 22-24 weeks

Low risk for preeclampsia (PE) & intrauterine growth restriction (IUGR)

High risk for PE & IUGR
Abnormal uterine artery waveforms after 20-24 weeks
Uterine artery
Clinical applications
Constitutionally Small

no increased perinatal death or morbidity

AC < 10th centile

Doppler

FGR

uteroplacental insufficiency
hypoxemia, acidosis

Soothill 1999
Doppler associated with 38% reduction perinatal death

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Peto Odds Ratio 95% CI</th>
<th>Weight (%)</th>
<th>Peto Odds Ratio 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chester 1992</td>
<td>1/338</td>
<td>4/336</td>
<td></td>
<td>4.0</td>
<td>0.30 [0.05, 1.72]</td>
</tr>
<tr>
<td>Dublin 1992</td>
<td>4/241</td>
<td>3/235</td>
<td></td>
<td>5.6</td>
<td>1.30 [0.29, 5.78]</td>
</tr>
<tr>
<td>Edinburgh 1993</td>
<td>12/1132</td>
<td>16/1197</td>
<td></td>
<td>22.2</td>
<td>0.79 [0.38, 1.67]</td>
</tr>
<tr>
<td>Leeds(I) 1990</td>
<td>3/250</td>
<td>3/250</td>
<td></td>
<td>4.8</td>
<td>1.00 [0.20, 4.99]</td>
</tr>
<tr>
<td>London(Guys) 1994</td>
<td>11/236</td>
<td>14/231</td>
<td></td>
<td>19.1</td>
<td>0.76 [0.34, 1.70]</td>
</tr>
<tr>
<td>Maastricht</td>
<td>2/74</td>
<td>3/76</td>
<td></td>
<td>3.9</td>
<td>0.68 [0.12, 4.03]</td>
</tr>
<tr>
<td>Oxford 1991</td>
<td>4/438</td>
<td>8/459</td>
<td></td>
<td>9.5</td>
<td>0.53 [0.17, 1.67]</td>
</tr>
<tr>
<td>Perth(I) 1991</td>
<td>9/275</td>
<td>9/270</td>
<td></td>
<td>14.0</td>
<td>0.98 [0.38, 2.51]</td>
</tr>
<tr>
<td>Sweden</td>
<td>0/214</td>
<td>3/212</td>
<td></td>
<td>2.4</td>
<td>0.13 [0.01, 1.28]</td>
</tr>
<tr>
<td>Sydney 1987</td>
<td>1/127</td>
<td>5/162</td>
<td></td>
<td>4.7</td>
<td>0.32 [0.06, 1.65]</td>
</tr>
<tr>
<td>Tygerberg</td>
<td>6/108</td>
<td>7/104</td>
<td></td>
<td>9.9</td>
<td>0.82 [0.27, 2.50]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>3433</td>
<td>3532</td>
<td></td>
<td>100.0</td>
<td>0.71 [0.50, 1.01]</td>
</tr>
</tbody>
</table>

Total events: 53 (Treatment), 75 (Control)
Test for heterogeneity chi-square=5.61 df=10 p=0.85 I²=0.09%
Test for overall effect z=1.88 p=0.06

Neilson JP, The Cochrane Library 2005, Issue 1
When are uterine artery measurements indicated?

- Suspicion of placental insufficiency / FGR
- FGR in previous pregnancy
- Mothers with systemic lupus erythematosus (SLE), factor V Leiden or other factors related to poor placentation
Repeatability of transabdominal uterine artery measurement

Table 1 Studies assessing repeatability of uterine artery Doppler during pregnancy

<table>
<thead>
<tr>
<th>Reference</th>
<th>n</th>
<th>Doppler technique</th>
<th>Doppler index</th>
<th>Repeatability</th>
<th>Statistical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraobserver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulman et al. 1986</td>
<td>NR</td>
<td>CW</td>
<td>S/D</td>
<td>4%</td>
<td>NR</td>
</tr>
<tr>
<td>Mulders et al. 1988</td>
<td>21</td>
<td>PW</td>
<td>PI</td>
<td>6.4%</td>
<td>CV</td>
</tr>
<tr>
<td>Gagnon et al. 1988</td>
<td>11</td>
<td>CW</td>
<td>S/D</td>
<td>6.1%</td>
<td>CV</td>
</tr>
<tr>
<td>Long et al. 1988</td>
<td>20</td>
<td>PW</td>
<td>PI</td>
<td>6%</td>
<td>CV</td>
</tr>
<tr>
<td>Oosterhof et al. 1992</td>
<td>15</td>
<td>PW</td>
<td>PI</td>
<td>10.8%</td>
<td>CV</td>
</tr>
<tr>
<td>Bower et al. 1993</td>
<td>5</td>
<td>Color</td>
<td>RI</td>
<td>7%</td>
<td>CV</td>
</tr>
<tr>
<td>Ferrier et al. 1994</td>
<td>5</td>
<td>Color</td>
<td>RI</td>
<td>4%</td>
<td>CV</td>
</tr>
<tr>
<td>Weissman et al. 1995</td>
<td>20</td>
<td>TV, CW</td>
<td>S/D</td>
<td>5%</td>
<td>CV</td>
</tr>
<tr>
<td>Chan et al. 1995</td>
<td>9</td>
<td>CW</td>
<td>RI</td>
<td>5.9%</td>
<td>CV</td>
</tr>
<tr>
<td>Harrington et al. 1997</td>
<td>10</td>
<td>TV, Color</td>
<td>PI</td>
<td>2.6%</td>
<td>CV</td>
</tr>
<tr>
<td>Liberati et al. 1997</td>
<td>5</td>
<td>Color</td>
<td>RI</td>
<td>5.1%</td>
<td>CV</td>
</tr>
<tr>
<td>Interobserver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trudinger et al. 1985</td>
<td>10</td>
<td>CW</td>
<td>S/D</td>
<td>No difference</td>
<td>CV</td>
</tr>
<tr>
<td>Schulman et al. 1986</td>
<td>NR</td>
<td>CW</td>
<td>S/D</td>
<td>4%</td>
<td>NR</td>
</tr>
<tr>
<td>Mulders et al. 1988</td>
<td>13</td>
<td>PW</td>
<td>PI</td>
<td>11.1%</td>
<td>CV</td>
</tr>
<tr>
<td>Oosterhof et al. 1992</td>
<td>10</td>
<td>PW</td>
<td>PI</td>
<td>10.1%</td>
<td>CV</td>
</tr>
<tr>
<td>Bower et al. 1993</td>
<td>10</td>
<td>CW</td>
<td>RI</td>
<td>−0.24 to 0.28</td>
<td>95% prediction interval</td>
</tr>
<tr>
<td>Bewley et al. 1993</td>
<td>20</td>
<td>CW</td>
<td>RI</td>
<td>−0.18 to 0.22</td>
<td>95% prediction interval</td>
</tr>
<tr>
<td>Ferrier et al. 1994</td>
<td>8</td>
<td>Color</td>
<td>RI</td>
<td>6.6%</td>
<td>CV</td>
</tr>
<tr>
<td>Yan et al. 1995</td>
<td>20</td>
<td>Color</td>
<td>RI</td>
<td>−0.24 to 0.16</td>
<td>95% prediction interval</td>
</tr>
<tr>
<td>Weissman et al. 1995</td>
<td>20</td>
<td>TV, CW</td>
<td>S/D</td>
<td>8%</td>
<td>CV</td>
</tr>
<tr>
<td>Chan et al. 1995</td>
<td>8</td>
<td>CW</td>
<td>RI</td>
<td>13.6%</td>
<td>CV</td>
</tr>
<tr>
<td>Liberati et al. 1997</td>
<td>10</td>
<td>Color</td>
<td>RI</td>
<td>7.4%</td>
<td>CV</td>
</tr>
</tbody>
</table>

NR, not reported; CW, continuous wave; PW, pulsed wave; Color, color-flow Doppler; TV, transvaginal; S/D, systolic/diastolic ratio; PI, pulsatility index; RI, resistance Index; CV, coefficient of variation.
Increased impedance to flow in the uterine arteries in pregnancies attending for routine antenatal care identifies approximately 40% (L.R. 6.0) of those who subsequently develop PE & approximately 20% (L.R. 3.5) of those who develop fetal growth restriction.
PI in clinical practice

- The decrease in uterine artery PI between 11w to 13w6d and 21w to 24w6d is steeper in pregnancies with a normal outcome than those developing pre-eclampsia (PE).
- Effective screening for PE can be achieved by uterine artery PI measurement at 11w to 13w6d & the change between these two periods.

Uteroplacental failure
- sequential well being changes

- Umbilical artery PI ↑
- Cerebral blood flow ↑ (MCA)
- Fetal size <5th centile (HC/AC)
- Growth ↓
- Moderate/severe Redistribution (MCA ↓)
- Abnormal venous blood flow (DV)
- ↓ AFI
- Oligohydramnios
Key points

1. Doppler investigations give insight into fetal & pregnancy patho-physiology
2. Doppler is one of the major breakthroughs in Fetal Medicine
3. Doppler can be used in all trimesters for different indications
4. Doppler can be used as a screening or a diagnostic tool, according to the circumstances
5. In the 2nd & 3rd trimesters Doppler studies can indicate abnormal placentation, fetal hypoxemia, fetal anemia & impending heart failure
6. Operators should use Doppler skillfully & with knowledge of its potentials, limitations & dangers
ISUOG Basic Training by ISUOG is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Based on a work at https://www.isuog.org/education/basic-training.html.

Permissions beyond the scope of this license may be available at https://www.isuog.org/