

ISUOG Basic Training Physical Principles of Ultrasound including Safety

Learning objectives

At the end of the lecture you will be able to:

- Explain how an ultrasound image is generated
- Describe the different ultrasound modes used for imaging
- Describe the current international safety standards relating to the thermal index (TI) and the mechanical index (MI)

Key questions

- 1. What is ultrasound?
- 2. How is a B-mode real time image produced?
- 3. How should the ALARA principle be applied?

Sound/Ultrasound

- Longitudinal mechanical wave
- Transmitted through medium by local displacement of particles within medium – compression & rarefaction
- Frequency (Hertz) = cycles/sec
- Human audible range = 20Hz 20,000Hz (20kHz)
- Ultrasound = frequencies above audible range

Sound

- Compressional wave
- Gas, liquid or solid medium

 Speed of sound depends on medium and temperature

- Air 343 m/s

Water1482 m/s

- Steel 5960 m/s

- Average in biological tissue 1540 m/s

Physics of sound

Medical US ~ 1 – 20 MHz

Piezoelectric effect
 – ability to generate (transduce)
 electrical charge in response to applied mechanical
 stress, & vice versa

Piezoelectric crystal - quartz, zirconium titanate,

modern ceramics

Pulse transmission

A-mode

Pulse receiving

Display on monitor

Ultrasound transducer (probe)

Large angle / width takes time!
Large number of sectors takes time!

Depth takes time!

M-Mode (Motion)

Frequency, resolution & penetration

- Low frequency:
 - Less resolution
 - More penetration
- High frequency:
 - High resolution
 - Less penetration

3.5 mHz	=	10-20 cm
5.0 mHZ	=	5-10 cm
7.5 mHz	=	2-5 cm
10.0 mHz	=	1-4 cm

Image - resolution

Lateral resolution

Axial resolution

Temporal resolution

Image enhancement

Tissue harmonic imaging

- 2f, 3f, 4f: laws of physics
- Probe also able to receive harmonic frequencies

Artefacts

An ultrasound image which does not match actual anatomy

Artefacts Drop out/ acoustic shadowing

- Dark area posterior to dense reflector
- Most marked along US beam

Reduce/remove by adjusting angle of insonation

Artefacts

Posterior enhancement/amplification

- Area of increased brightness immediately posterior to cystic structure
- Caused by lack in sound attenuation through a structure with few interfaces

Confirm by changing angle of insonation

ArtefactsReverberation

- Occurs when US beam encounters 2 strong parallel reflectors
- Multiple parallel echoes result from back-and-forth travel of US between 2 reflecting surfaces

Change angle of insonation

Artefacts Reverberation

 Probe face & subcutaneous tissue interface provide parallel reflectors

Change angle of insonation

ArtefactsSide lobe artifact

- Results from strong reflector that lies outside the incident beam, but within side lobe of central beam
- Echoes from reflector are displayed as if originating from within central beam

Safety issues – biological effects

- Increased movement of molecules -> results in rise in temperature
- Gas bubble can collapse (cavitation) -> results in pressure wave released into the surrounding tissue

Safety issues – TI, MI & ALARA

- Thermal Index = TI (<1.0)
 (power needed to increase temperature by 1 °C)
- Mechanical Index = MI (<1.0)
- ALARA principle as low as reasonably achievable

Scanning times & TI

The Safe Use of Ultrasound in Medical Diagnosis (3rd ed): 2012; The British Institute of Radiology ,154.

Safety issues - power levels

Safety statements

- International Society Ultrasound in Obstetrics & Gynecology (ISUOG)
 - http://www.isuog.org/StandardsAndGuidelines/Statements+and+Guidelines/Safety+Statements/
- British Medical Ultrasound Society (BMUS)
 https://www.bmus.org/static/uploads/resources/STATEMENT_ON_THE_SAFE
 _USE_AND_POTENTIAL_HAZARDS_OF_DIAGNOSTIC_ULTRASOUND.pdf
- American Institute of Ultrasound in Medicine (AIUM)
 http://www.aium.org/resources/statements.aspx

Key points

- Understand how an ultrasound beam produces an image
- 2. Recognise artefacts, and know how to avoid them
- Understand the factors important to obtain an optimal Doppler signal
- 4. Be aware of the principles behind TI and MI

ISUOG Basic Training by <u>ISUOG</u> is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Based on a work at https://www.isuog.org/education/basic-training.html.

Permissions beyond the scope of this license may be available at https://www.isuog.org/

