ISUOG Basic Training

Fetal Biometry – Dating, Assessing Size & Estimating Fetal Weight
Learning objective

At the end of the lecture you will be able to:

- List the measurements commonly used in obstetric ultrasound examinations & describe how these are used
Key questions

1. How, & when in gestation, should gestational age be assigned?

2. What are the key features required to measure the crown rump length (CRL) correctly?

3. What are the key features of the section of the fetal head required to measure the head circumference (HC) & biparietal diameter (BPD) correctly?

4. What are the key features of the section of the fetal abdomen required to measure the abdominal circumference (AC) correctly?

5. What are the key features of the section of the fetal femur required to measure the femur length (FL) correctly?
Topics covered

- Estimating gestational age/assessing fetal size
- Standard fetal biometry – CRL, BPD, HC, AC & FL
- Correct anatomical planes for measurement & assessment of head, abdomen & leg
- Components for estimation of fetal weight (EFW)
- 3rd trimester gestational age (GA) assignment - late referral
Estimating gestational age

• Between 4w3d and 5w6d – measure mean sac diameter (MSD) of gestational sac but do not date or assign EDD

• Between 6w and 9w6d - CRL [4 mm – 29.9 mm]

• Between 10w and 13w6d - CRL (30 mm – 84 mm)

• Between 14w and 24w - HC and FL should ‘agree’

• After 24 weeks, assess size **not** gestational age
ISUOG Practice Guidelines CRL criteria

- Midline sagittal section of whole embryo/fetus
- Oriented horizontally, with CRL measurement line ~90° to ultrasound beam
- Fills most of the width of the screen
- Neutral position – neither flexed nor hyperextended
- End points of crown & rump clearly defined
- Avoid inclusion of structures such as yolk sac
- Amniotic fluid visible between chin & chest (to ensure fetus not flexed)

Ultrasound Obstet Gynecol 2013; 41: 102-113

Basic Training
INTERGROWTH-21st CRL criteria

CRL Key points on accurate measurement

- Good magnification
- Mid-sagittal section
- Neutral position
- Fetus is horizontal
- Crown and rump clearly seen
- Calipers placed correctly:
- Best of three measurements

Ioannou C et al BJOG 2013,120 (Suppl.2): 38-41
Correct caliper placement

Correct

55.8mm = 12w1d

Incorrect

50.7mm = 11w5d
Practical implications of poor CRL technique

30 yrs, NT 2.4mm, dating by CRL *(Tri 21 risks at term)*

<table>
<thead>
<tr>
<th>CRL</th>
<th>GA</th>
<th>Background risk</th>
<th>Adjusted risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.8</td>
<td>11w6d</td>
<td>1:906</td>
<td>1:182</td>
</tr>
<tr>
<td>48.9</td>
<td>11w4d</td>
<td>1:906</td>
<td>1:143</td>
</tr>
</tbody>
</table>
Correct anatomical plane HC/BPD

Head circumference (HC) and ventricular atrium (VA)

http://fetalanomaly.screening.nhs.uk/standardsandpolicy
Correct anatomical plane HC/BPD

1. Cross section at level of lateral ventricles/thalami (*slide*)
2. Midline (falx cerebri) horizontal (*dip*)
3. Midline equidistant from upper & lower parietal bones (*angle*)
4. Cavum septum pellucidum bisects midline, 1/3 from synciput (front) to occiput (back)
5. Rugby football shape, rounded at back, more pointed at front (*rotate*)
6. Skull contour regular (*angle*)
Dating by HC

- Cross section of head at level of lateral ventricles/thalami
- HC from ellipse round outer skull border
- HC calculated from measurement of BPD (outer to outer) + OFD (outer to outer)
 \[HC = (BPD + OFD) \times 1.62 \]

HC = 158.0mm = 19w
Dating by BPD

- Cross section of head at level of lateral ventricles/thalami
- BPD from linear calipers across widest diameter between parietal bones
- Upper caliper on OUTER border of upper skull
- Lower caliper on either OUTER or INNER border of lower skull, depending on BPD chart used
- Skull thickness at 20 weeks ~3 mm, equivalent to ~3 days of gestation
Loughna et al Ultrasound 2009, 17(3):161-167
Correct anatomical plane FL

1. Both ends of ossified metaphysis clearly visible (rotate + slide)

2. Longest axis measured

3. Distal femoral epiphysis if visible or spur artefacts should not be included

4. Angle of femur to incident beam should correspond to technique of reference chart (dip)

5. Recommend 0°-15° to horizontal

http://fetalanomaly.screening.nhs.uk/standardsandpolicy
Dating by HC & FL

- Assigning GA accurately requires GA from HC & FL to ‘agree’
- Both 50th centile – straightforward

\begin{itemize}
 \item HC = 158 mm = 19w
 \item FL = 29 mm = 18w6d
\end{itemize}
Dating by HC & FL

- Assigning GA accurately requires GA from HC & HC & FL to ‘agree’
 - same centile?
 - +/- 10 centiles?
 - +/- 45 centiles?

- Where HC & FL ‘disagree’
 - review HC & FL sections & caliper placements
 - repeat sections & re-measure
 - consider significance of genuine discrepancy
HC & FL discrepancy

- Review HC & FL sections & caliper placements
- Repeat sections & re-measure
- Consider significance of genuine discrepancy

Small FL (below 5th centile)
- Skeletal dysplasia
- Down’s syndrome
- ?early FGR

Refer for further assessment

Small HC (below 5th centile)
- Microcephaly
- Spina bifida

Refer for further assessment
Landmarks & gestational age

- 20 week landmarks
- 32 week landmarks
- 33 week landmarks
Correct anatomical plane AC

Transverse section of fetal abdomen

1. As circular as possible (rotate or angle)

2. Short length of umbilical vein/at level of portal sinus (usually rotate)

3. Stomach ‘bubble’ visualised (slide)

4. Kidneys should not be visible (slide)

http://fetalanomaly.screening.nhs.uk/standardsandpolicy

Basic Training
AC sections

1. Correct short length of umbilical vein
2. Stomach ‘bubble’ visualised
3. Incorrect long length of umbilical vein
Measurement of AC

- Caliper(s) at outer surface of skin line
 a. Ellipse
 b. Linear
 - anteroposterior diameter (APAD)
 - transverse abdominal diameter (TAD)
 - diameters 90° to each other, outer to outer
 - \(AC = (APAD + TAD) \times 1.57 \)
Assessing fetal size

- Once the EDD has been assigned (CRL), fetal biometry is used to assess
 - Fetal growth velocity
 - Fetal size
 - Fetal weight
- Measurements should not be used to reassign the EDD
- Time interval between scans - at least 2 weeks
International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project

Fetal growth

- Head circumference
- Abdominal circumference
- Femur length

Chitty et al. in British Journal of Obstetrics and Gynaecology (Feb 1994)
Components for EFW

- AC alone
- AC, HC
- AC, HC, FL
- AC, HC, FL, BPD
Caliper placement & estimating fetal weight

AC 310.3mm
FL 60.1mm
EFW (Hadlock) = 2299g

AC 322.8mm
FL 65.4mm
EFW (Hadlock) = 2837g
Estimated fetal weight

Hadlock 2 and 3 - most reliable formulae
- > 3 kg, % error increases

3rd trimester GA assignment (late referral)

- Biometry used to assess fetal size (& wt), not gestational age
- Subsequent examination(s) to assess growth velocity
3rd trimester GA assignment (late referral)

- Pregnancy dating >24 weeks unreliable
 - ?average 30 weeks
 - ?small 32 weeks
 - ?large 28 weeks

- Biometry used to assess fetal size (& weight), not gestational age

- Subsequent examination(s) to assess growth velocity
Key points

1. Correct the incorrect level by sliding the probe, the shape by rotating the probe, the symmetry of the contents by angling the probe and the position of the structures relative to the horizontal by dipping the probe

2. Ideally pregnancies should be dated by CRL, between 10w and 13w6d, i.e. 30 mm – 84 mm

3. Pregnancies scanned for the first time between 14 and 24 weeks should be dated by HC or FL. These two parameters should ‘agree’

4. Gestational age should not be assigned if scanning a pregnancy for the first time after 24 weeks
5. Accurate dating, assessment of size &/or estimating fetal weight requires
 – The correct section(s) to be obtained
 – The calipers to be placed correctly as described by the relevant reference chart(s)

6. It is preferable not to report an inaccurate measurement than to provide potentially clinically misleading ultrasound information